Left Termination of the query pattern transpose_aux_in_3(a, g, a) w.r.t. the given Prolog program could not be shown:



Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

Clauses:

transpose_aux(.(R, Rs), X, .(C, Cs)) :- row2col(R, .(C, Cs), Cols1, [], Accm).
row2col(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) :- row2col(Xs, Cols, Cols1, .([], A), B).

Queries:

transpose_aux(a,g,a).

We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
transpose_aux_in: (f,b,f)
row2col_in: (f,b,f,b,f) (f,f,f,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

transpose_aux_in_aga(.(R, Rs), X, .(C, Cs)) → U1_aga(R, Rs, X, C, Cs, row2col_in_agaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U1_aga(R, Rs, X, C, Cs, row2col_out_agaga(R, .(C, Cs), Cols1, [], Accm)) → transpose_aux_out_aga(.(R, Rs), X, .(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_in_aga(x1, x2, x3)  =  transpose_aux_in_aga(x2)
U1_aga(x1, x2, x3, x4, x5, x6)  =  U1_aga(x6)
row2col_in_agaga(x1, x2, x3, x4, x5)  =  row2col_in_agaga(x2, x4)
.(x1, x2)  =  .
U2_agaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_agaga(x8)
row2col_in_aaaga(x1, x2, x3, x4, x5)  =  row2col_in_aaaga(x4)
U2_aaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_aaaga(x8)
row2col_out_aaaga(x1, x2, x3, x4, x5)  =  row2col_out_aaaga(x1, x2, x3, x5)
row2col_out_agaga(x1, x2, x3, x4, x5)  =  row2col_out_agaga(x1, x3, x5)
[]  =  []
transpose_aux_out_aga(x1, x2, x3)  =  transpose_aux_out_aga(x1, x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog



↳ Prolog
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

transpose_aux_in_aga(.(R, Rs), X, .(C, Cs)) → U1_aga(R, Rs, X, C, Cs, row2col_in_agaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U1_aga(R, Rs, X, C, Cs, row2col_out_agaga(R, .(C, Cs), Cols1, [], Accm)) → transpose_aux_out_aga(.(R, Rs), X, .(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_in_aga(x1, x2, x3)  =  transpose_aux_in_aga(x2)
U1_aga(x1, x2, x3, x4, x5, x6)  =  U1_aga(x6)
row2col_in_agaga(x1, x2, x3, x4, x5)  =  row2col_in_agaga(x2, x4)
.(x1, x2)  =  .
U2_agaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_agaga(x8)
row2col_in_aaaga(x1, x2, x3, x4, x5)  =  row2col_in_aaaga(x4)
U2_aaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_aaaga(x8)
row2col_out_aaaga(x1, x2, x3, x4, x5)  =  row2col_out_aaaga(x1, x2, x3, x5)
row2col_out_agaga(x1, x2, x3, x4, x5)  =  row2col_out_agaga(x1, x3, x5)
[]  =  []
transpose_aux_out_aga(x1, x2, x3)  =  transpose_aux_out_aga(x1, x3)


Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

TRANSPOSE_AUX_IN_AGA(.(R, Rs), X, .(C, Cs)) → U1_AGA(R, Rs, X, C, Cs, row2col_in_agaga(R, .(C, Cs), Cols1, [], Accm))
TRANSPOSE_AUX_IN_AGA(.(R, Rs), X, .(C, Cs)) → ROW2COL_IN_AGAGA(R, .(C, Cs), Cols1, [], Accm)
ROW2COL_IN_AGAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_AGAGA(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
ROW2COL_IN_AGAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_AAAGA(Xs, Cols, Cols1, .([], A), B)
ROW2COL_IN_AAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_AAAGA(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
ROW2COL_IN_AAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_AAAGA(Xs, Cols, Cols1, .([], A), B)

The TRS R consists of the following rules:

transpose_aux_in_aga(.(R, Rs), X, .(C, Cs)) → U1_aga(R, Rs, X, C, Cs, row2col_in_agaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U1_aga(R, Rs, X, C, Cs, row2col_out_agaga(R, .(C, Cs), Cols1, [], Accm)) → transpose_aux_out_aga(.(R, Rs), X, .(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_in_aga(x1, x2, x3)  =  transpose_aux_in_aga(x2)
U1_aga(x1, x2, x3, x4, x5, x6)  =  U1_aga(x6)
row2col_in_agaga(x1, x2, x3, x4, x5)  =  row2col_in_agaga(x2, x4)
.(x1, x2)  =  .
U2_agaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_agaga(x8)
row2col_in_aaaga(x1, x2, x3, x4, x5)  =  row2col_in_aaaga(x4)
U2_aaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_aaaga(x8)
row2col_out_aaaga(x1, x2, x3, x4, x5)  =  row2col_out_aaaga(x1, x2, x3, x5)
row2col_out_agaga(x1, x2, x3, x4, x5)  =  row2col_out_agaga(x1, x3, x5)
[]  =  []
transpose_aux_out_aga(x1, x2, x3)  =  transpose_aux_out_aga(x1, x3)
TRANSPOSE_AUX_IN_AGA(x1, x2, x3)  =  TRANSPOSE_AUX_IN_AGA(x2)
U2_AAAGA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_AAAGA(x8)
U2_AGAGA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_AGAGA(x8)
ROW2COL_IN_AAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_AAAGA(x4)
ROW2COL_IN_AGAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_AGAGA(x2, x4)
U1_AGA(x1, x2, x3, x4, x5, x6)  =  U1_AGA(x6)

We have to consider all (P,R,Pi)-chains

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

TRANSPOSE_AUX_IN_AGA(.(R, Rs), X, .(C, Cs)) → U1_AGA(R, Rs, X, C, Cs, row2col_in_agaga(R, .(C, Cs), Cols1, [], Accm))
TRANSPOSE_AUX_IN_AGA(.(R, Rs), X, .(C, Cs)) → ROW2COL_IN_AGAGA(R, .(C, Cs), Cols1, [], Accm)
ROW2COL_IN_AGAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_AGAGA(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
ROW2COL_IN_AGAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_AAAGA(Xs, Cols, Cols1, .([], A), B)
ROW2COL_IN_AAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_AAAGA(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
ROW2COL_IN_AAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_AAAGA(Xs, Cols, Cols1, .([], A), B)

The TRS R consists of the following rules:

transpose_aux_in_aga(.(R, Rs), X, .(C, Cs)) → U1_aga(R, Rs, X, C, Cs, row2col_in_agaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U1_aga(R, Rs, X, C, Cs, row2col_out_agaga(R, .(C, Cs), Cols1, [], Accm)) → transpose_aux_out_aga(.(R, Rs), X, .(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_in_aga(x1, x2, x3)  =  transpose_aux_in_aga(x2)
U1_aga(x1, x2, x3, x4, x5, x6)  =  U1_aga(x6)
row2col_in_agaga(x1, x2, x3, x4, x5)  =  row2col_in_agaga(x2, x4)
.(x1, x2)  =  .
U2_agaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_agaga(x8)
row2col_in_aaaga(x1, x2, x3, x4, x5)  =  row2col_in_aaaga(x4)
U2_aaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_aaaga(x8)
row2col_out_aaaga(x1, x2, x3, x4, x5)  =  row2col_out_aaaga(x1, x2, x3, x5)
row2col_out_agaga(x1, x2, x3, x4, x5)  =  row2col_out_agaga(x1, x3, x5)
[]  =  []
transpose_aux_out_aga(x1, x2, x3)  =  transpose_aux_out_aga(x1, x3)
TRANSPOSE_AUX_IN_AGA(x1, x2, x3)  =  TRANSPOSE_AUX_IN_AGA(x2)
U2_AAAGA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_AAAGA(x8)
U2_AGAGA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_AGAGA(x8)
ROW2COL_IN_AAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_AAAGA(x4)
ROW2COL_IN_AGAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_AGAGA(x2, x4)
U1_AGA(x1, x2, x3, x4, x5, x6)  =  U1_AGA(x6)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 5 less nodes.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
PiDP
              ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

ROW2COL_IN_AAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_AAAGA(Xs, Cols, Cols1, .([], A), B)

The TRS R consists of the following rules:

transpose_aux_in_aga(.(R, Rs), X, .(C, Cs)) → U1_aga(R, Rs, X, C, Cs, row2col_in_agaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U1_aga(R, Rs, X, C, Cs, row2col_out_agaga(R, .(C, Cs), Cols1, [], Accm)) → transpose_aux_out_aga(.(R, Rs), X, .(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_in_aga(x1, x2, x3)  =  transpose_aux_in_aga(x2)
U1_aga(x1, x2, x3, x4, x5, x6)  =  U1_aga(x6)
row2col_in_agaga(x1, x2, x3, x4, x5)  =  row2col_in_agaga(x2, x4)
.(x1, x2)  =  .
U2_agaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_agaga(x8)
row2col_in_aaaga(x1, x2, x3, x4, x5)  =  row2col_in_aaaga(x4)
U2_aaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_aaaga(x8)
row2col_out_aaaga(x1, x2, x3, x4, x5)  =  row2col_out_aaaga(x1, x2, x3, x5)
row2col_out_agaga(x1, x2, x3, x4, x5)  =  row2col_out_agaga(x1, x3, x5)
[]  =  []
transpose_aux_out_aga(x1, x2, x3)  =  transpose_aux_out_aga(x1, x3)
ROW2COL_IN_AAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_AAAGA(x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
PiDP
                  ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

ROW2COL_IN_AAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_AAAGA(Xs, Cols, Cols1, .([], A), B)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .
[]  =  []
ROW2COL_IN_AAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_AAAGA(x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
                ↳ PiDP
                  ↳ PiDPToQDPProof
QDP
                      ↳ Instantiation
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

ROW2COL_IN_AAAGA(A) → ROW2COL_IN_AAAGA(.)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By instantiating [15] the rule ROW2COL_IN_AAAGA(A) → ROW2COL_IN_AAAGA(.) we obtained the following new rules:

ROW2COL_IN_AAAGA(.) → ROW2COL_IN_AAAGA(.)



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
                ↳ PiDP
                  ↳ PiDPToQDPProof
                    ↳ QDP
                      ↳ Instantiation
QDP
                          ↳ NonTerminationProof
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

ROW2COL_IN_AAAGA(.) → ROW2COL_IN_AAAGA(.)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

ROW2COL_IN_AAAGA(.) → ROW2COL_IN_AAAGA(.)

The TRS R consists of the following rules:none


s = ROW2COL_IN_AAAGA(.) evaluates to t =ROW2COL_IN_AAAGA(.)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from ROW2COL_IN_AAAGA(.) to ROW2COL_IN_AAAGA(.).




We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
transpose_aux_in: (f,b,f)
row2col_in: (f,b,f,b,f) (f,f,f,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

transpose_aux_in_aga(.(R, Rs), X, .(C, Cs)) → U1_aga(R, Rs, X, C, Cs, row2col_in_agaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U1_aga(R, Rs, X, C, Cs, row2col_out_agaga(R, .(C, Cs), Cols1, [], Accm)) → transpose_aux_out_aga(.(R, Rs), X, .(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_in_aga(x1, x2, x3)  =  transpose_aux_in_aga(x2)
U1_aga(x1, x2, x3, x4, x5, x6)  =  U1_aga(x3, x6)
row2col_in_agaga(x1, x2, x3, x4, x5)  =  row2col_in_agaga(x2, x4)
.(x1, x2)  =  .
U2_agaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_agaga(x6, x8)
row2col_in_aaaga(x1, x2, x3, x4, x5)  =  row2col_in_aaaga(x4)
U2_aaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_aaaga(x6, x8)
row2col_out_aaaga(x1, x2, x3, x4, x5)  =  row2col_out_aaaga(x1, x2, x3, x4, x5)
row2col_out_agaga(x1, x2, x3, x4, x5)  =  row2col_out_agaga(x1, x2, x3, x4, x5)
[]  =  []
transpose_aux_out_aga(x1, x2, x3)  =  transpose_aux_out_aga(x1, x2, x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog



↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

transpose_aux_in_aga(.(R, Rs), X, .(C, Cs)) → U1_aga(R, Rs, X, C, Cs, row2col_in_agaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U1_aga(R, Rs, X, C, Cs, row2col_out_agaga(R, .(C, Cs), Cols1, [], Accm)) → transpose_aux_out_aga(.(R, Rs), X, .(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_in_aga(x1, x2, x3)  =  transpose_aux_in_aga(x2)
U1_aga(x1, x2, x3, x4, x5, x6)  =  U1_aga(x3, x6)
row2col_in_agaga(x1, x2, x3, x4, x5)  =  row2col_in_agaga(x2, x4)
.(x1, x2)  =  .
U2_agaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_agaga(x6, x8)
row2col_in_aaaga(x1, x2, x3, x4, x5)  =  row2col_in_aaaga(x4)
U2_aaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_aaaga(x6, x8)
row2col_out_aaaga(x1, x2, x3, x4, x5)  =  row2col_out_aaaga(x1, x2, x3, x4, x5)
row2col_out_agaga(x1, x2, x3, x4, x5)  =  row2col_out_agaga(x1, x2, x3, x4, x5)
[]  =  []
transpose_aux_out_aga(x1, x2, x3)  =  transpose_aux_out_aga(x1, x2, x3)


Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

TRANSPOSE_AUX_IN_AGA(.(R, Rs), X, .(C, Cs)) → U1_AGA(R, Rs, X, C, Cs, row2col_in_agaga(R, .(C, Cs), Cols1, [], Accm))
TRANSPOSE_AUX_IN_AGA(.(R, Rs), X, .(C, Cs)) → ROW2COL_IN_AGAGA(R, .(C, Cs), Cols1, [], Accm)
ROW2COL_IN_AGAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_AGAGA(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
ROW2COL_IN_AGAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_AAAGA(Xs, Cols, Cols1, .([], A), B)
ROW2COL_IN_AAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_AAAGA(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
ROW2COL_IN_AAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_AAAGA(Xs, Cols, Cols1, .([], A), B)

The TRS R consists of the following rules:

transpose_aux_in_aga(.(R, Rs), X, .(C, Cs)) → U1_aga(R, Rs, X, C, Cs, row2col_in_agaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U1_aga(R, Rs, X, C, Cs, row2col_out_agaga(R, .(C, Cs), Cols1, [], Accm)) → transpose_aux_out_aga(.(R, Rs), X, .(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_in_aga(x1, x2, x3)  =  transpose_aux_in_aga(x2)
U1_aga(x1, x2, x3, x4, x5, x6)  =  U1_aga(x3, x6)
row2col_in_agaga(x1, x2, x3, x4, x5)  =  row2col_in_agaga(x2, x4)
.(x1, x2)  =  .
U2_agaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_agaga(x6, x8)
row2col_in_aaaga(x1, x2, x3, x4, x5)  =  row2col_in_aaaga(x4)
U2_aaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_aaaga(x6, x8)
row2col_out_aaaga(x1, x2, x3, x4, x5)  =  row2col_out_aaaga(x1, x2, x3, x4, x5)
row2col_out_agaga(x1, x2, x3, x4, x5)  =  row2col_out_agaga(x1, x2, x3, x4, x5)
[]  =  []
transpose_aux_out_aga(x1, x2, x3)  =  transpose_aux_out_aga(x1, x2, x3)
TRANSPOSE_AUX_IN_AGA(x1, x2, x3)  =  TRANSPOSE_AUX_IN_AGA(x2)
U2_AAAGA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_AAAGA(x6, x8)
U2_AGAGA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_AGAGA(x6, x8)
ROW2COL_IN_AAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_AAAGA(x4)
ROW2COL_IN_AGAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_AGAGA(x2, x4)
U1_AGA(x1, x2, x3, x4, x5, x6)  =  U1_AGA(x3, x6)

We have to consider all (P,R,Pi)-chains

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

TRANSPOSE_AUX_IN_AGA(.(R, Rs), X, .(C, Cs)) → U1_AGA(R, Rs, X, C, Cs, row2col_in_agaga(R, .(C, Cs), Cols1, [], Accm))
TRANSPOSE_AUX_IN_AGA(.(R, Rs), X, .(C, Cs)) → ROW2COL_IN_AGAGA(R, .(C, Cs), Cols1, [], Accm)
ROW2COL_IN_AGAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_AGAGA(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
ROW2COL_IN_AGAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_AAAGA(Xs, Cols, Cols1, .([], A), B)
ROW2COL_IN_AAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_AAAGA(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
ROW2COL_IN_AAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_AAAGA(Xs, Cols, Cols1, .([], A), B)

The TRS R consists of the following rules:

transpose_aux_in_aga(.(R, Rs), X, .(C, Cs)) → U1_aga(R, Rs, X, C, Cs, row2col_in_agaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U1_aga(R, Rs, X, C, Cs, row2col_out_agaga(R, .(C, Cs), Cols1, [], Accm)) → transpose_aux_out_aga(.(R, Rs), X, .(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_in_aga(x1, x2, x3)  =  transpose_aux_in_aga(x2)
U1_aga(x1, x2, x3, x4, x5, x6)  =  U1_aga(x3, x6)
row2col_in_agaga(x1, x2, x3, x4, x5)  =  row2col_in_agaga(x2, x4)
.(x1, x2)  =  .
U2_agaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_agaga(x6, x8)
row2col_in_aaaga(x1, x2, x3, x4, x5)  =  row2col_in_aaaga(x4)
U2_aaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_aaaga(x6, x8)
row2col_out_aaaga(x1, x2, x3, x4, x5)  =  row2col_out_aaaga(x1, x2, x3, x4, x5)
row2col_out_agaga(x1, x2, x3, x4, x5)  =  row2col_out_agaga(x1, x2, x3, x4, x5)
[]  =  []
transpose_aux_out_aga(x1, x2, x3)  =  transpose_aux_out_aga(x1, x2, x3)
TRANSPOSE_AUX_IN_AGA(x1, x2, x3)  =  TRANSPOSE_AUX_IN_AGA(x2)
U2_AAAGA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_AAAGA(x6, x8)
U2_AGAGA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_AGAGA(x6, x8)
ROW2COL_IN_AAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_AAAGA(x4)
ROW2COL_IN_AGAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_AGAGA(x2, x4)
U1_AGA(x1, x2, x3, x4, x5, x6)  =  U1_AGA(x3, x6)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 5 less nodes.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
PiDP
              ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

ROW2COL_IN_AAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_AAAGA(Xs, Cols, Cols1, .([], A), B)

The TRS R consists of the following rules:

transpose_aux_in_aga(.(R, Rs), X, .(C, Cs)) → U1_aga(R, Rs, X, C, Cs, row2col_in_agaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_aaaga(Xs, Cols, Cols1, .([], A), B))
U2_aaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_aaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_agaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_aaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_agaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U1_aga(R, Rs, X, C, Cs, row2col_out_agaga(R, .(C, Cs), Cols1, [], Accm)) → transpose_aux_out_aga(.(R, Rs), X, .(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_in_aga(x1, x2, x3)  =  transpose_aux_in_aga(x2)
U1_aga(x1, x2, x3, x4, x5, x6)  =  U1_aga(x3, x6)
row2col_in_agaga(x1, x2, x3, x4, x5)  =  row2col_in_agaga(x2, x4)
.(x1, x2)  =  .
U2_agaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_agaga(x6, x8)
row2col_in_aaaga(x1, x2, x3, x4, x5)  =  row2col_in_aaaga(x4)
U2_aaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U2_aaaga(x6, x8)
row2col_out_aaaga(x1, x2, x3, x4, x5)  =  row2col_out_aaaga(x1, x2, x3, x4, x5)
row2col_out_agaga(x1, x2, x3, x4, x5)  =  row2col_out_agaga(x1, x2, x3, x4, x5)
[]  =  []
transpose_aux_out_aga(x1, x2, x3)  =  transpose_aux_out_aga(x1, x2, x3)
ROW2COL_IN_AAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_AAAGA(x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
PiDP
                  ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

ROW2COL_IN_AAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_AAAGA(Xs, Cols, Cols1, .([], A), B)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .
[]  =  []
ROW2COL_IN_AAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_AAAGA(x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
                ↳ PiDP
                  ↳ PiDPToQDPProof
QDP
                      ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

ROW2COL_IN_AAAGA(A) → ROW2COL_IN_AAAGA(.)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By instantiating [15] the rule ROW2COL_IN_AAAGA(A) → ROW2COL_IN_AAAGA(.) we obtained the following new rules:

ROW2COL_IN_AAAGA(.) → ROW2COL_IN_AAAGA(.)



↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
                ↳ PiDP
                  ↳ PiDPToQDPProof
                    ↳ QDP
                      ↳ Instantiation
QDP
                          ↳ NonTerminationProof

Q DP problem:
The TRS P consists of the following rules:

ROW2COL_IN_AAAGA(.) → ROW2COL_IN_AAAGA(.)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

ROW2COL_IN_AAAGA(.) → ROW2COL_IN_AAAGA(.)

The TRS R consists of the following rules:none


s = ROW2COL_IN_AAAGA(.) evaluates to t =ROW2COL_IN_AAAGA(.)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from ROW2COL_IN_AAAGA(.) to ROW2COL_IN_AAAGA(.).